Is In-house Composting a Practical Method of Disease Containment and Disposal for Turkeys, Breeder Operations, and Multi-level Houses?

Gary A. Flory, Eric S. Bendfeldt and Robert W. Peer

National Carcass Disposal Symposium

December 5 - 7, 2006 Beltsville, MD

Project Partnerships

- ☐ Cargill Turkeys
- Perdue Farms
- ☐ Pilgrim's Pride
- ☐ University of Delaware
- ☐ University of Maryland
- ☐ Virginia Cooperative Extension
- ☐ Virginia Department of Agriculture and Consumer Sciences

- Virginia Department of Environmental Quality
- ☐ Virginia Poultry Federation
- Virginia Poultry DiseaseTask Force
- West Virginia Department of Agriculture
- ☐ West Virginia University
- ☐ Cooperating farmer: Harry Showalter

Project Context

- Poultry and eggs are Virginia's top agricultural sector, directly supporting about 1,200 families, 915 of which are in the Valley.
- ☐ The six poultry processing companies in the Shenandoah Valley employ more than 7,000 people.
- ☐ The poultry industry is very diverse and complex with different types of birds, operations, house designs, and aged structures.

The Virginia Experience with Avian Influenza in 2002

- ☐ 197 farms affected and depopulated
- □ 79% were turkey farms
 - ☐ 125 Commercial turkeys and 28 turkey breeders
- ☐ Remaining farms
 - □ 30 Commercial broiler breeders
 - ☐ 12 Commercial broiler
 - 2 layer
- ☐ 4.7 million birds depopulated
- □ \$7.25 million for turkey disposal
- \square Cost of disposal per farm = \$30,175
- \square Cost of disposal per ton = \$145

The Delmarva Experience with Avian Influenza in 2004

- ☐ In 2004, an avian influenza outbreak occurred on the Delmarva Peninsula.
- ☐ In-house composting was used as the disease containment and carcass disposal method on 5-pound broilers.
- ☐ Avian influenza was confined to 3 poultry farms despite being in a very concentrated poultry area.
- ☐ There were over 4 million birds within a 2-mile radius of affected farms.

Why In-House Composting?

- Minimizes potential groundwater pollution.
- Avoids high fuel costs and potential air pollution
- Relatively low cost when compared to landfilling
- Prevents the potential spread of disease
- No local government approval is required.
- ☐ No state permits are needed.
- ☐ A beneficial end product
- ☐ In-house composting was attempted on 2 flocks in 2002 AI outbreak with limited success

Bird flu in Europe and Asia has changed everything

Working Assumption in Virginia

☐ Transportation of infected carcasses off the farm to dispose of carcasses by other methods may not be permitted particularly in the case of a virulent strain of AI like H5N1 because of public perception, outcry, and health officials concern about the further spread of a highly pathogenic disease.

Project Objectives

- To build on the earlier success of in-house composting of broilers on the Delmarva Peninsula in 2004.
- ☐ Demonstrate in-house composting as a practicable method of disease containment and disposal for:
 - ☐ Turkeys and birds greater than 8 pounds
 - ☐ Breeder operations where space is limited
 - ☐ Multi-level and double-deck poultry houses
- Evaluate the effectiveness of different carbon material for composting

Project Objectives (cont'd.)

- Evaluate the effects of different carcass treatments:
 - ☐ Leaving the turkey whole versus tilling, shredding, or crushing
- ☐ Determine the minimum amount of carbon material needed to compost turkeys
- ☐ Determine effectiveness of composting when windrow height and size is less than ideal

But, what about large birds?

- ☐ Turkey production is more prominent in the Shenandoah Valley.
- □ 79% or 153 farms affected by avian influenza were turkey breeder and grow-out operations.
- ☐ Previous work and research in 1980s by J. Schwartz with 8 pound roasters.

Non-Free Span and Turkey Housing in the Valley Complex*

- □ 243 breeder houses on 109 farms
- ☐ 144 double-deck houses on 72 farms
- ☐ 79 pole buildings on 40 farms
- ☐ Approximately, 900 turkey houses on 345 farms
- Non-free span and turkey farms account for approximately 65 to 70 % of the poultry operations in the Valley Complex.
- * Partial survey of 5 integrators and 1 breeder operation

Treatments and Variables of Study with Turkey Carcasses

- Carbon MaterialsUsed
 - Hardwood Sawdust
 - Woodchips
 - ☐ Built-up Litter
 - ☐ Starter Litter
 - ☐ Blend of starter litter and built-up litter

- Birds
 - Whole birds mixed and piled
 - ☐ Shredded birds mixed and piled
 - Crushed birds mixed and piled

Whole birds mixed with sawdust

Capping the Sawdust windrow

Temperature Monitoring

Woodchips with Whole Birds

Crushing carcasses with a skid loader

Temperature and Time Comparison

Temperatures for Minimum Carbon Material Treatments

Date

What about breeder, layer, and non-free span houses?

Non-Free Span and Turkey Housing in the Valley Complex*

- □ 243 breeder houses on 109 farms
- □ 144 double-deck houses on 72 farms
- ☐ 79 pole buildings on 40 farms
- ☐ Approximately, 900 turkey houses on 345 farms
- Non-free span and turkey farms account for approximately 65 to 70 % of the poultry operations in the Valley Complex

^{*} Partial survey of 5 integrators and 1 breeder operation

Constraints for In-House Composting within Breeder Operations

- ☐ Limited to composting in 13' wide scratch area
- ☐ Limited access to maneuver skid loader
- ☐ Height of houses limits ability to construct windrows of ideal width and height
- Must plan for how carbon material will be accessed during construction of windrows

Typical Breeder Operations

Treatments and Variables of WV Study with Breeder Carcasses

Study initiated on April 27, 2006

- ☐ Carbon Materials Used
 - ☐ Poultry mortality compost
- Birds
 - 8 to 9 lb. broiler breeders
 - Whole birds mixed and piled
 - ☐ Crushed birds mixed and piled (in-house and outside in storage shed)

- ☐ Work Area
 - □ Width = 14'
 - \Box Length = 30'
- Euthanasia Method
 - \square CO₂ cylinder
 - ☐ Fire fighting foam

Demonstration in West Virginia with a Breeder Operation

Temperature Monitoring of WV Study

Compost was ready to be moved after 3 weeks for curing and future land application

Results of In-House Composting of Turkeys

- ☐ Very little remained of the turkey carcasses after two weeks and even less after being turned twice.
- ☐ Temperatures reached and maintained temperatures of at least 130 degrees for 5 days
- ☐ All four carbon materials were effective in composting (e.g., woodchips and sawdust).
- ☐ Crushing increased temperatures and the decomposition process by ~ 11 days.

Results of WV Study

- □ Carcasses can be composted in windrow heights as short as 3 ½ feet and widths as narrow as 13 feet.
- Using the same carbon source, windrow temperatures for crushed birds reached temperatures necessary for deactivating the AI virus faster than windrows with whole birds.
- ☐ Fire fighting foam used for euthanasia did not adversely affect the composting process.

Conclusions

- ☐ With a good base, cap, and proper disease monitoring, the compost could be turned and moved to a litter storage shed or stored under a compost fleece within 3 to 4 weeks.
- ☐ Comparable to down time experienced in 2002
- For bird carcasses greater than 4 pounds, crushing enhances the composting process, increases windrow temperatures necessary for virus deactivation, and reduces the amount of carbon material needed for composting.

Conclusions

- ☐ Use of firefighting foam for euthanasia does not hinder the composting process.
- ☐ Transportation of carcasses off the farm introduces additional economic, environmental, and social challenges.
- On-farm disposal methods, such as in-house composting, minimize these challenges and offer a biosecure and cost-effective option for disease containment and carcass disposal.

Next Steps

- On-going innovative and cooperative approaches will be critical to complement the results of these projects and additional research and preparations for on-farm disposal options.
- ☐ Sharing of key information and continued collaboration of diverse interest groups will be essential to support agriculture, protect public health, and prevent possible disease transmission.

Contact Information

- Gary A. Flory, Agricultural and Water Quality Assessment Manager, Virginia Department of Environmental Quality, Valley Regional Office, Phone: (540) 574-7840 Fax: (540) 574-7844 Email: gaflory@deq.virginia.gov
- □ Eric Bendfeldt, Community Viability Specialist, Virginia Cooperative Extension, Phone: (540) 432-6029 Fax: (540) 432-6251 Email: ebendfel@vt.edu
- □ Robert W. Peer, Agricultural Program Coordinator, Virginia Department of Environmental Quality, Valley Regional Office, Phone: (540) 574-7866 Fax: (540) 574-7844 Email: rwpeer@deq.virginia.gov

Thank you very much!

